Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840 149 screening colonoscopies

Hermann Brenner, Michael Hoffmeister, Christa Stegmaier, Gerhard Brenner, Lutz Altenhofen and Ulrike Haug

Gut 2007;56;1585-1589: originally published online 25 Jun 2007; doi:10.1136/gut.2007.122739

Updated information and services can be found at: http://gut.bmj.com/cgi/content/full/56/11/1585

These include:

References
This article cites 23 articles, 10 of which can be accessed free at: http://gut.bmj.com/cgi/content/full/56/11/1585#BIBL

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to: http://journals.bmj.com/cgi/reprintform
To subscribe to Gut go to: http://journals.bmj.com/subscriptions/
Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840 149 screening colonoscopies

Hermann Brenner, Michael Hoffmeister, Christa Stegmaier, Gerhard Brenner, Lutz Altenhofen, Ulrike Haug

OBJECTIVES: To derive age and sex specific estimates of transition rates from advanced adenomas to colorectal cancer by combining data of a nationwide screening colonoscopy registry and national data on colorectal cancer (CRC) incidence.

Design: Registry based study.

Setting: National screening colonoscopy programme in Germany.

Patients: Participants of screening colonoscopy in 2003 and 2004 (n = 840 149).

Main outcome measures: Advanced adenoma prevalence, colorectal cancer incidence, annual and 10 year cumulative risk of developing CRC among carriers of advanced adenomas according to sex and age (range 55–80+ years)

Results: The age gradient is much stronger for CRC incidence than for advanced adenoma prevalence. As a result, projected annual transition rates from advanced adenomas to CRC strongly increase with age (from 2.6% in age group 55–59 years to 5.6% in age group ≥80 years among women, and from 2.6% in age group 55–59 years to 5.1% in age group ≥80 years among men). Projections of 10 year cumulative risk increase from 25.4% at age 55 years to 42.9% at age 80 years in women, and from 25.2% at age 55 years to 39.7% at age 80 years in men.

Conclusions: Advanced adenoma transition rates are similar in both sexes, but there is a strong age gradient for both sexes. Our estimates of transition rates in older age groups are in line with previous estimates derived from small case series in the pre-colonoscopy era independent of age. However, our projections for younger age groups are considerably lower. These findings may have important implications for the design of CRC screening programmes.

METHODS

Data sources

German national registry of screening colonoscopies

Prevalences of advanced adenomas (defined as presence of at least one adenoma with at least one of the following features: >1 cm in size, tubulovillous or villous adenoma, high grade dysplasia; no further distinction according to number of adenomas) by 5 year age groups and sex were obtained from a nationwide registry of screening colonoscopies, which was established after implementation of colonoscopic screening for women and men aged ≥55 years in Germany in late 2002. Only experienced endoscopists (internists/gastroenterologists or surgeons with pertinent certified specialisations, having conducted at least 200 colonoscopies and at least 50 polypectomies under supervision in the preceding two calendar years) are admitted to conduct screening colonoscopies. Requirements for maintenance of admission include conduct of at least 200 colonoscopies and at least 10 polypectomies per year. Histopathological examination is performed decennially by certified pathologial labs.

Abbreviation: CRC, colorectal cancer
In the nationwide screening colonoscopy registry, basic sociodemographic variables and results of screening colonoscopy are collected anonymously for all screening colonoscopies conducted in Germany using a standardised reporting form to be completed by the gastroenterologists. In case of multiple adenomas, only the largest is recorded (categories used for classification of size of adenomas: >1 cm, <1 cm; categories used for histopathological classification of adenomas: tubular, tubulovillous, villous, high grade dysplasia).

The forms are scanned, processed and checked for completeness and plausibility using standardised algorithms at regional data centres before transmission to the national data centre for analysis. For this analysis, 840 149 records from screening colonoscopies conducted by more than 2000 endoscopists in 2003 and 2004 were available.

Population-based cancer registry data
National estimates of colorectal cancer incidence by age and sex are provided by the Robert Koch Institute, a Federal Institute for Disease Surveillance in Germany. These estimates are derived from the best available incidence data from multiple state cancer registries and nationwide available CRC mortality data. Coding of cancers in the cancer registries follows international standards for epidemiological cancer registries. For this analysis, we used CRC incidence data for the year 2002, the year immediately preceding introduction of screening colonoscopy, as the latter may affect observed CRC incidence and specific observed incidence rates to younger ages. In the main analysis, a shift by 3.6 years was made. In sensitivity analyses, this shift was varied between 2 and 5 years, according to the range of duration from preclinical CRC onset to CRC diagnosis estimated by other authors.

Finally, cumulative risk of developing CRC within 10 years (conditional on not dying from other causes) among carriers of advanced adenomas at the beginning of each age group i—that is, at ages 55, 60, 65, 70, 75 and 80 years—was calculated as $\lambda = \lambda_0 \times (1 - \exp(-5(A_{ij} + A_{(i+1)j})))^{23}$

RESULTS
In total, records from the nationwide screening colonoscopy database of 840 149 women and men who underwent a screening colonoscopy in Germany in 2003 or 2004 were included in the estimates of advanced adenoma prevalences (table 1). Prevalences of advanced adenomas were higher in men than in women, and they increased with age in both sexes (from age 55–59 years to \geq80 years they increased from 3.4% to 7.3% among women, and from 6.2% to 9.5% among men, table 1). All age and sex specific prevalence estimates were based on at least 600 cases and most prevalence estimates were based on more than 2000 cases.

The age gradient was considerably stronger for observed CRC "incidence". For women, a more than fivefold increase between ages 55–59 and 80+ years was observed. For men, higher incidence rates at all ages and a more than fourfold increase from the youngest to the oldest age group was observed. Within each age group, estimated CRC onset was somewhat higher than observed incidence, given that a substantial proportion of cases diagnosed in each age group were assumed to have had their onset in the preceding younger age group and given the strong increase of incidence with age. The age gradient of estimated rates of CRC onset was somewhat lower than the age gradient of observed incidence rates, but it was still considerably stronger than the age gradient of advanced adenoma prevalence (table 1).

Combining the advanced adenoma prevalences and the estimated CRC onset rates as outlined in the Methods section, and assuming that 85% of CRCs arise from advanced adenomas, yielded estimates of annual transition rates from 2.6% in the youngest age group to 5.6% in age group 80+ among women, and from 2.6% in the youngest age group to 5.1% in the oldest age group among men (table 1 and fig 1, left graph).

Table 1 Advanced adenoma prevalence, colorectal cancer incidence and estimated annual progression of advanced adenomas according to sex and age

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age(y)</th>
<th>Number screened</th>
<th>Advanced adenomas n (%)</th>
<th>National estimates of colorectal cancer occurrence</th>
<th>Annual transition in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Observed incidence</td>
<td>Estimated onset†</td>
</tr>
<tr>
<td>Women</td>
<td>55–59</td>
<td>112 399</td>
<td>38.66 (3.4)</td>
<td>82.1</td>
<td>104.3</td>
</tr>
<tr>
<td></td>
<td>60–64</td>
<td>160 880</td>
<td>67.73 (4.2)</td>
<td>113.0</td>
<td>161.3</td>
</tr>
<tr>
<td></td>
<td>65–69</td>
<td>125 133</td>
<td>600.5 (4.8)</td>
<td>180.1</td>
<td>238.4</td>
</tr>
<tr>
<td></td>
<td>70–74</td>
<td>55 582</td>
<td>3219 (5.8)</td>
<td>261.0</td>
<td>326.2</td>
</tr>
<tr>
<td></td>
<td>75–79</td>
<td>27 414</td>
<td>1785 (6.5)</td>
<td>351.5</td>
<td>440.4</td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>9492</td>
<td>691 (7.3)</td>
<td>479.0</td>
<td>481.2</td>
</tr>
<tr>
<td>Men</td>
<td>55–59</td>
<td>66 330</td>
<td>4130 (6.2)</td>
<td>132.4</td>
<td>188.7</td>
</tr>
<tr>
<td></td>
<td>60–64</td>
<td>110 397</td>
<td>8312 (7.5)</td>
<td>210.5</td>
<td>284.8</td>
</tr>
<tr>
<td></td>
<td>65–69</td>
<td>97 411</td>
<td>8317 (8.4)</td>
<td>313.6</td>
<td>405.7</td>
</tr>
<tr>
<td></td>
<td>70–74</td>
<td>47 018</td>
<td>4336 (9.2)</td>
<td>441.5</td>
<td>452.6</td>
</tr>
<tr>
<td></td>
<td>75–79</td>
<td>21 220</td>
<td>2051 (9.7)</td>
<td>456.9</td>
<td>512.9</td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>6673</td>
<td>632 (9.5)</td>
<td>551.4</td>
<td>564.7</td>
</tr>
</tbody>
</table>

* Patients diagnosed with colorectal cancer within age group per 100 000 per year; † patients estimated to have onset of CRC within age group per 100 000 per year; ‡ onset of colorectal cancers per 100 advanced adenomas.
Estimates of 10 year cumulative risk increased from 25.4% at age 55 years to 42.9% at age 80 years in women, and from 25.2% at age 55 to 39.7% at age 80 years among men (table 2 and fig 1, right graph). These estimates varied by ±3.9–3.8 percentage points at age 55 years and by ±5.9–5.1 percentage points at age 80 years when the proportion of CRCs arising from adenomas was varied between 70% and 100% in sensitivity analyses. Variation of the time from CRC onset to CRC diagnosis between 2 and 5 years led to relatively minor variation in the estimated 10 year cumulative risk (table 2).

DISCUSSION

In this paper, we combined data from a unique nationwide colonoscopy registry and from population-based cancer registries from Germany to project age and sex specific risk of CRC development among carriers of advanced colorectal adenomas. Any direct estimation of this parameter from cohorts of adenoma carriers would be unethical, as advanced adenomas have to be removed once they are detected, and pertinent data from the pre-colonoscopy era are very sparse. Our analysis shows that the risk of advanced adenoma–CRC transition is comparable among women and men, but strongly increases with age.

Our projections of advanced adenoma progression to CRC in the older age groups are in line with previous estimates based on much smaller samples, which have been used for all age groups in previous analyses of cost effectiveness of CRC screening. For example, the cost effectiveness analyses of colorectal cancer screening by Frazier et al and O’Leary et al assumed a base-case value of 5% for the annual transition rate from high-risk polyps to localised cancer regardless of age, citing the 1987 report of Stryker et al from the Mayo clinic case series as pertinent reference. The same estimate was used, again for all age groups and both sexes, in the recent cost-effectiveness analysis by Ladabaum and Song. Furthermore, polyp dwell time, which is closely related to the adenoma–CRC transition rate, has been found to be an important influential parameter in pertinent sensitivity analyses in a number of cost effectiveness studies. Therefore, the finding of a strongly age-dependent transition rate may be of high relevance for the optimal design of CRC screening programmes.

In our analysis, we implicitly made the assumption that all CRCs arising from adenomas were arising from advanced adenomas—that is, advanced adenomas represent a necessary interim stage in the adenoma–CRC sequence. A similar assumption (eg large adenomas or high risk polyps being necessary intermediate stages in the development of CRC from small adenomas or from low risk polyps, respectively) has been implicitly or explicitly made by other authors, and it appears plausible on biological grounds.

In the interpretation of our results, specific strengths and limitations of this study require careful consideration. Strengths include the large population-based data sources, especially a unique nationwide registry with more than 840 000 records from screening colonoscopies. The latter allowed estimating age and sex-specific prevalences of advanced adenomas in an unselected screening population with very small random error. Unfortunately, no data for age group 50–54 years could be provided, as colonoscopy screening in Germany is offered from 55 years on only. Given the lack of information on adenoma location in the national colonoscopy database, it was not possible to further assess potential differences in transition rates of proximal and distal advanced adenomas. The latter might be of interest when (cost-) effectiveness of screening colonoscopy and screening sigmoidoscopy are compared. Furthermore, although high levels of qualification and experience are a prerequisite for conducting screening colonoscopies and for certification of pathology labs in Germany, and all screening colonoscopies have to be documented on a standardised form, the degree of standardisation of information given on colonoscopy reports is likely to be less perfect in such a nationwide database than it could be achieved in a trial conducted by a few specialised centres with centralised review of all adenomas. However, our results might be more relevant for judging the risk that advanced adenomas detected in routine practice will progress to cancer. Furthermore, potentially less than perfect classification of adenomas provided on colonoscopy reports would be expected to apply to all ages. The resulting potential misclassification would therefore be...
Like other studies, we had to rely on external sources for estimates of the proportion of CRC arising from adenomas, but uncertainty with respect to this parameter was taken care of in sensitivity analyses. The same applies to estimates of the duration from CRC onset to CRC detection. The main finding of our study, the strong age dependency of adenoma–CRC transition rates, was not affected by variation of overall levels of these parameters. However, we cannot rule out that potential variation of these parameters between age groups might affect the projections of age-specific CRC transition rates to some extent.

Despite its limitations, our analysis provides information on age and sex-specific advanced adenoma transition rates, which could be helpful in the design of endoscopy based screening programmes and their optimisation regarding effectiveness and cost effectiveness. Our finding that advanced adenoma transition rates are strongly age-dependent could have important clinical implications, possibly including a higher age at first screening or differential endoscopy intervals according to age. However, additional risk factors, such as family history of CRC, also have to be taken into account. To further differentiate estimates of the natural history of colorectal adenomas—for example, by various types and by location—large studies with more detailed information about colonscopic findings are needed.

Authors’ affiliations

Hermann Brenner, Michael Hoffmeister, Ulrike Haug, Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany

Christa Stegmaier, Saarland Cancer Registry, Saarbrücken, Germany

Gerhard Brenner, Lutz Altenhofen, Zentralinstitut für die kassenärztliche Versorgung in der Bundesrepublik Deutschland, Berlin, Germany

Competing interests: None.

REFERENCES

Table 2 Estimated 10 year cumulative risk of colorectal cancer among women and men with advanced adenomas at various ages

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age (y)</th>
<th>10 year cumulative risk (%)</th>
<th>One-way sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G = 0.85</td>
<td>Q = 0.70</td>
<td>D = 0.50</td>
</tr>
<tr>
<td>Women</td>
<td>55</td>
<td>25.4</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>31.2</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>36.2</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>41.0</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>43.3</td>
<td>37.4</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>42.9</td>
<td>37.0</td>
</tr>
<tr>
<td>Men</td>
<td>55</td>
<td>25.2</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>30.7</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>33.9</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>35.2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>38.0</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>39.7</td>
<td>34.0</td>
</tr>
</tbody>
</table>

The proportion of colorectal cancers (CRC) arising from polypoid adenomas and the duration from CRC onset to CRC detection D are set to 0.85 and 3.6 years, respectively, in the main analyses, and they are varied between 0.7 and 1.0 and between 2 and 5 years, respectively, in the sensitivity analyses.
History of bilious vomiting: a tale with a twist

Clinical presentation
A 16-year-old girl was admitted with a 9-month history of bilious vomiting, colicky central abdominal pain and 3 stone weight loss. There was no previous medical history or psychiatric problems. Blood investigations were normal.

On examination she looked well. Her abdomen was soft and non-tender. There was a succussion splash. Abdominal radiograph and gastroscopy were normal. A barium meal follow-through examination was arranged (fig 1).

Question
What is the cause of this young girl’s vomiting?

See page 1598 for answer

S Mairs, A A Palejwala
Department of Gastroenterology, Queens Hospital, Burton-on-Trent, Staffordshire, UK

M Palaniappan
Department of Radiology, Queens Hospital, Burton-on-Trent, Staffordshire, UK

A J P Eccersley
Department of Surgery, Queens Hospital, Burton-on-Trent, Staffordshire, UK

Correspondence to: Dr A A Palejwala, Department of Gastroenterology, Queens Hospital Burton, Belvedere Road, Burton-on-Trent DE13 0RB, UK; apalejwala@hotmail.com

doi: 10.1136/gut.2006.105585

Figure 1 Barium meal.