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1. Basics of networks and social network analysis
2. Analysis 1: Utilizing nationwide networks to 

explain variation in health outcomes following 
medical procedures

3. Analyses 2 (if time permits): Using networks to 
study peer-effects in the treatment intensity of 
end-of-life health care of cancer patients

4. Relevant references
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Outline



• A social network consists of one or more sets of 
actors—also known as ‘‘units,’’ ‘‘nodes,’’ or 
‘‘vertices’’—together with the possibly directed 
relationships or social ties among them 
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Definition of a social network
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Patient-Sharing Network

Patients’ utilization of services with two providers during a time-
period (e.g., calendar year):

Hospital, 
Practice or 
Physician

A

Hospital, 
Practice or 
Physician

B B

Contribution to  
provider A –
provider B 
professional 
relationship



US Cardiovascular Care Hospital-level Patient-
sharing Network in 2011

(Top 25% Hospitals Based on Degree)

Node size corresponds to hospital’s degree
Edge thickness reflects shared patient care

Prepared by 
Erika Moen



• Multiple hospital and regional networks
• Do features of these networks and actors positions 

in them correlate with important health variables?
• Summary network features:

• Network-level; e.g., proportion of connections present
• Actor (within network) level; e.g., number of connections
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…

Y1, X1 Y2, X2 Yn, Xn
…

Utilizing Multiplicity of Sub-Networks



Density – number of edges divided by the maximum possible 
number of edges (the proportion of connections present) 
∝ average degree of nodes
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Density = 7/28 = 0.25Density = 16/28 = 0.57

Network-level feature: Density

• Hospitals with a higher density of physician ties have higher 
costs and more intensive care (Barnett et al, 2012)

Hospital density and variation in care
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Degree of 
node = 3
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Within-network (positional) features

Clustering coefficient

Fraction of connections among 
neighbors of given actor (e.g., 
physician). In this example Clust. 
Coef. = 4/10

Betweenness centrality

Fraction of geodesic (shortest) paths 
between other actors (e.g., physicians) 
that pass through given actor; bigger = 
more central actor
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Hospitals with high centrality of primary care physicians have 
lower costs and care intensity (Barnett et al, 2012)
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Analysis 1: Utility of Nationwide Network data

• There is substantial unexplained variation in health care 
outcomes (and utilization and cost) in the United States

• A nationwide network of physicians facilitates evaluation of 
new research questions
• Overcomes fact that network studies are often hindered by 

arbitrary network boundaries
• Case Study: Do the within-hospital and the nationwide 

(across hospital) network positions of the physician 
implanting an Implantable Cardiac Defibrillator (ICD) in a 
patient associate with patient outcomes?

• Outcome event: Death within two years following an 
Implantable Cardiac Defibrillator (ICD)

• Key predictors: Within-hospital and National Across-
hospital physician degree
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• ICDs use electrical pulses or 
shocks to control potentially life-
threatening ventricular 
arrhythmias in patients with heart 
failure

• Surgery is primarily performed by 
electrophysiologists, 
cardiologists, and thoracic 
surgeons

• Disagreement on 
appropriateness; therapeutic 
benefit versus quality of life

• Benefits depend on patient 
characteristics

• High cost of device
James O'Malley, Ph.D. 10

Implantable Cardiac Defibrillators (ICDs) 
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Physician Degree Decomposition

• Let A denote the network adjacency matrix and let i, j denote two 
physicians (a “dyad”)

• The degree of a physician in the network may be expressed as 
𝐷𝑒𝑔𝑟𝑒𝑒& = ∑&)*+ 𝐴&*

=-
&)*

+
𝐴&*𝐼 𝐻𝑜𝑠𝑝& = 𝐻𝑜𝑠𝑝* +-

&)*

+
𝐴&* 𝐼(𝐻𝑜𝑠𝑝& ≠ 𝐻𝑜𝑠𝑝&)

= 𝑊𝑖𝑡ℎ𝑖𝑛𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒& + 𝐴𝑐𝑟𝑜𝑠𝑠𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒&

6/5/2019 James O'Malley, Ph.D. 11



Data and Descriptive Analysis

• 105,109 ICD therapy patients treated by 3,474 implanting 
physicians within 1,280 hospitals over 2008-2011

• Pearson correlation of physician within- and across-hospital 
degree = 0.25
• Across-hospital degree has potential to capture unique 

variation
• Adjust for physician and hospital volume to isolate the effects 

of the physician degree measures
• Volume measures only modestly correlated with 

physician degree measures
• May allow the network-effects to be modified by volume 

measures
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Statistical Model

• Let 𝑌&@ denote the death within two years (1 = death, 0 = 
survived)

• Hierarchical (mixed-effect) logistic regression model of patient 
outcome on prior years network and other predictors:

𝑙𝑜𝑔𝑖𝑡 𝑌& @AB |𝐷𝑒𝑔&@ = 𝛽E + 𝛽B𝐷𝑒𝑔(𝑊𝑖𝑡ℎ𝑖𝑛)& + 𝛽F𝐷𝑒𝑔(𝐴𝑐𝑟𝑜𝑠𝑠)&
+𝛽G𝑃𝑎𝑡&@ + 𝛽I𝑃ℎ𝑦𝑠&@ + 𝛽I𝐻𝑜𝑠𝑝&@ + 𝜃LMM,& + 𝛾LPQR,& + 𝛿TUVQ,&
• where Deg = degree; Pat, Phys, and Hosp denote control 

predictors of the patient, physician, and health referral region 
(HRR);  𝜃LMM, 𝜃LPQR and 𝛿TUVQ are independent random 
effects for HRR, hospital and physician each assumed to be 
drawn from normal distributions with mean 0 and unknown 
variances
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Main Effect Results
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Characteristic Estimate (std err) p-value
Physician variables
   Within-hospital degree -4.94e-4 (2.35-4) 0.04
   Across-hospital degree 2.91e-4 (7.56e-5) <0.001
   ICD procedure volume -1.46e-3 (5.47e-4) 0.008
   Specialty: cardiology -2.39e-1 (4.93e-2) <0.001
   Publishing record -2.94e-2 (2.05e-2) 0.15
   Clinical trial participation -6.88e-2 (2.45e-2) 0.005
Hospital variables
   ICD procedure volume -4.05e-4 (2.34e-4) 0.08
   Degree 3.51e-5 (3.91e-5) 0.37
   HHI 1.35e-1 (8.30e-2) 0.1
   Teaching status -2.29e-2 (2.95e-2) 0.44
Patient controls
   Lots of them!



Results: Model with Interaction Effects Added
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Interpretation of Results
• Patients have better outcomes when treated by 

physicians who are locally (within-hospital) prominent 
• Within-hospital degree effect is offset by volume (main 

effect of within-hospital degree was negative)
• Across-hospital degree effect increases with volume

Interaction model Estimate (std err) p-value
Within-hospital degree x 
physician volume 1.49e-05 (7.13e-06) 0.04

Across-hospital degree x 
physician volume 4.17e-06 (2.12e-06) 0.05



Summary
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• Within-hospital degree could be interpreted as a marker 
for high quality care after accounting for volume

• Physicians with high across-hospital degree: 
• Might be being referred more complex patients than 

physicians with low external degree
• Or may be treating a broader spectrum of 

cardiovascular disease patients and so are potentially 
less specialized in ICD therapy

• Potential policy implication: Patients undergoing select 
surgical procedures should be channeled to specific 
surgeons and hospitals to optimize outcomes



Analysis 2: Peer Effects of the Intensity of 
Physician End of Life Spending

• With Landon, Keating and Onnela at Harvard
• Research question: Does a physician’s mean 

spending on cancer patients in their last month of life 
depend on the spending of their peer physicians’ 
cancer care delivery?
• Is the effect modified by whether physician peers work in 

the same medical practice?
• The key predictors are peer variables, which are evaluated 

on other physicians, not the focal physician
• Associated regression coefficients termed “peer effects”
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Background: Types of social influence analyses

• Endogenous peer effects
• Does the behavior of my peers affect my own behavior?
• The case considered today

• Exogenous peer effects
• Does the treatment received by my peers affect my 

outcome?

* Y, X =  Ypeer, Xpeer



• Denote the network strength (number of shared 
patients) between providers i and j by 𝑊&*
• By definition 𝑊&& = 0

• The matrix of the shared patients is denoted, 𝑊
• Scale the rows of W to sum to 1 (a row-stochastic 
matrix)

• If Y denotes the outcome variable, WY is the 
corresponding peer variable (averaged over peers)
• Interpret as the exposure to peers who exhibit the trait 

(health care spending, technology adoption, medical 
practice) being modeled

Evaluation of Peer Variable Predictors
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• Network ties reflect shared patients among 
physicians who cared for at least 30 Medicare 
patients within the same episode of care
• Median degree = 7

• For all physicians who cared for a cancer patient who 
died, we then developed peer variables based on
physicians in the same practice (identified via Tax ID) 
and separately for those outside of practice within 
the HRR
• Organizational affiliation again allows decomposition of 

network variables and effects into components

Analysis of Peer Effects of End-of-Life 
Spending
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• Let 𝑦&@ denote patient case-mix Medicare spending over the 
last 30-days of life for physician i in year t

• Key predictors: Prior year weighted average spending per 
patient over the peer physicians in the same practice and in 
different practices than physician i

• Statistical model for Medicare spending per patient year:
E 𝑙𝑜𝑔 𝑦&(@AB) 𝑌@, 𝜃& = 𝛽E + 𝛽B Y𝑌 𝑊𝑖𝑡ℎ𝑖𝑛𝑃𝑟𝑎𝑐𝑡 & +

𝛽F Y𝑌 𝐴𝑐𝑟𝑜𝑠𝑠𝑃𝑟𝑎𝑐𝑡 & +𝛽GZ𝑥&@ + 𝜃LMM,& + 𝛾T\]^,& + 𝛿TUVQ,&
where 𝑥 denotes control predictors and 𝜃LMM, 𝜃T\]^ and 
𝛿TUVQ are independent random variables from normal 
distributions with mean 0 and unknown variances

Statistical Model
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Results: Peer Effect of End of Life Spending

*P<.05; †P<.01, ‡P<.001
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Type of peer effect Effect of peers outside 
of practice

Effect of peers in 
practice

Increase in spending in last 30 days of life $72 ($35-110)‡ $27 ($6-$48)*

For each $1000 increase in spending for peers’ patients in 
prior year…

• Mean (standard deviation) spending in the last month of life 
was $16,237 ($17,124)  

• More of the peer effect was explained by peer physicians 
outside of the practice ($72 increase for each $1000 increase 
by peer physicians’ patients, P<.001) than peer physicians in 
the practice ($27 for each $1000 increase by within-practice 
peer physicians’ patients, P=.01)



• Exposure to peer physicians with higher end-of-life spending 
per patient may increase a physician’s own spending

• Peer-effect analyses can help guide interventions on the 
health care system to help improve quality of care delivered 
and functioning 
• Strong peer effects motivate group interventions and educational 

interventions
• Weak peer effects suggest that independently held physician 

beliefs may account for some of the unexplained geographic 
variation in health outcome variables

Summary
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